JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of palmitoleic acid on melanogenic protein expression in murine b16 melanoma.

Melanogenesis is a well-known physiological response of human skin that may occur because of exposure to ultraviolet light, for genetic reasons, or due to other causes. In our efforts to find new skin lightening agents, palmitoleic acid was investigated for its ability to inhibit melanogenesis. In this study, palmitoleic acid's effect on melanin formation was assessed. Results indicated that palmitoleic acid was shown to down-regulate melanin content in a dose-dependent pattern. To clarify the target of palmitoleic acid action in melanogenesis, we performed Western blotting for tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), which are key melanogenic enzymes. Palmitoleic acid inhibited tyrosinase, TRP-2, and MITF expressions in a dose-dependent manner. However, it did not inhibit TRP-1 expression. In order to assess its usefulness in future cosmetic product applications, the cytotoxic effects of the palmitoleic acid were also determined by colourimetric MTT assays using human keratinocyte HaCaT cells. Palmitoleic acid exhibited no cytotoxicity at 500 muM in a human cell line. Therefore, this study suggests that palmitoleic acid is a candidate anti-melanogenic agent, and it might be effective in hyperpigmentation disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app