Add like
Add dislike
Add to saved papers

Human non-rapid eye movement stage II sleep spindles are blocked upon spontaneous K-complex coincidence and resume as higher frequency spindles afterwards.

The purpose of this study was to investigate a potential relation between the K-complex (KC) and sleep spindles of non-rapid eye movement (NREM) stage II of human sleep. Using 58 electroencephalogram electrodes, plus standard electrooculogram and electromyogram derivations for sleep staging, brain activity during undisturbed whole-night sleep was recorded in six young adults (one of them participated twice). NREM stage II spindles (1256 fast and 345 slow) and 1131 singular generalized KCs were selected from all sleep cycles. The negative peak of the KC, the positive peak of the KC (where applicable), and the prominent negative wave peak of slow and fast spindles were marked as events of reference. Fast Fourier transform-based time-frequency analysis was performed over the marked events, which showed that: (a) fast spindles that happen to coincide with KC are interrupted (100% of 403 cases) and in their place a slower rhythmic oscillation often (80%) appears; and (b) spindles that are usually (72% of 1131) following KCs always have a higher frequency (by ∼1 Hz) than both the interrupted spindles and the individual fast spindles that are not in any way associated with a KC. This enhancement of spindle frequency could not be correlated to any of the KC parameters studied. The results of this study reveal a consistent interaction between the KC and the sleep spindle during NREM stage II in human sleep.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app