Add like
Add dislike
Add to saved papers

A General Strategy to Prepare TiO(2)-core Gold-shell Nanoparticles as SERS-tags.

The synthesis and characterization of TiO(2)-based core-shell nanoparticles as surface-enhanced Raman Scattering (SERS) tags are reported. A hydrolysis approach is first used to generate colloidal TiO(2) nanoparticles, which are subsequently tagged with Raman probe molecules and encapsulated within a gold nanoshell. The resulting core-shell nanoparticles are characterized by using a number of techniques including UV-visible spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy (EDX) to confirm the successful coating of the Au shells. These core-shell nanoparticles exhibit very strong and reproducible SERS signals of the Raman probe molecules. Three different types of Raman probe molecules are used to prepare different SERS-active nanoparticles (SERS-tags), which demonstrates the versatility of the design. Such TiO(2)-based metal-coated core-shell nanoparticles will be useful as SERS-tags in biological assay and imaging applications. They may also provide a platform for fundamental studies in the ongoing investigations on the mechanisms of SERS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app