Regulatory mechanism of hypothalamo-pituitary-adrenal (HPA) axis and neuronal changes after adrenalectomy in type 2 diabetes

Sun Shin Yi, In Koo Hwang, Jae Hoon Shin, Jung Hoon Choi, Choong Hyun Lee, Il Yong Kim, Yo Na Kim, Moo-Ho Won, In-Sun Park, Je Kyung Seong, Yeo Sung Yoon
Journal of Chemical Neuroanatomy 2010, 40 (2): 130-9
Diabetes, especially type 2, is closely associated with hypothalamo-pituitary-adrenal (HPA) axis regulation. Short-term effects of adrenalectomy (ADX) in type 2 diabetes are well characterized; however, there have been few reports on the long-term effects of ADX in genetically engineered type 2 diabetes and the neuroendocrine system. We performed bilateral ADX in Zucker Lean Control rats (ZLC; ADX-ZLC), Zucker Diabetic Fatty rats (ZDF; ADX-ZDF), and sham control rats to evaluate how the HPA axis would be regulated in long-term corticosterone deficient type 2 diabetic animals. We evaluated arginine vasopressin (AVP), glucocorticoid receptor (GR), and corticotropin-releasing hormone (CRH) expression with immunohistochemistry (IHC), immunofluorescence, real-time PCR, and Western blot analysis in each treatment group 7 weeks post ADX to assess HPA axis regulatory patterns in connection with type 2 diabetes. Additionally, mRNA expression of AVP and CRH receptors (V1aR, V1bR, CRHR1, and CRHR2) was also measured and adrenocorticotropin hormone (ACTH) immunoreactivity was surveyed by IHC to add to data regarding the regulatory mechanism. AVP and CRH protein expression levels increased after ADX in the hypothalamus of diabetic rats based on IHC results; however, we found that the subtypes of each receptor may be regulated differently in ADX groups compared to sham groups. Immunoreactivity of ACTH in the pituitary gland was enhanced in ADX groups and GR expression levels in the hypothalamic paraventricular nuclei (PVN) remained high, as determined by IHC as well as Western blot analysis. Without the negative feedback system of corticosterone, CRH is highly enhanced and may primarily combine with CRHR1 to stimulate negative feedback through ACTH in the pituitary gland in type 2 diabetic rats with long-term ADX. Although the negative feedback signal was not transmitted appropriately following long-term ADX with type 2 diabetes, a high GR protein level was maintained as in type 2 diabetes. The long-termed lack of corticosterone in the blood stream is a very important factor for normal regulation of the HPA axis even in diabetic animals. From the data, we can conclude that the stimulated HPA axis regulation in the developing type 2 diabetic animals following long-term adrenalectomy has remained elevated rather than diminished. Therefore, the current study may provide useful information to better understand patients suffering from both type 2 diabetes and Addison's disease.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"