Add like
Add dislike
Add to saved papers

Poling force analysis in diagonal stride at different grades in cross country skiers.

The aim of this study was to characterize the dynamic parameters of poling action during low to moderate uphill skiing in the diagonal stride technique. Twelve elite cross country skiers performed an incremental test using roller skis on a treadmill at 9 km/h at seven different grades, from 2° to 8°. The pole ground reaction force and the pole inclination were measured, and the propulsive force component and poling power were then calculated. The duration of the active poling phase remained unchanged, while the recovery time decreased with the increase in the slope. The ratio between propulsive and total poling forces (effectiveness) was approximately 60% and increased with the slope. Multiple regression estimated that approximately 80% of the variation of the poling power across slopes was explained by the increase of the poling force, the residual variation was explained by the decrease of the pole inclination, while a small contribution was provided by the increase of the poling relative to the cycle time. The higher power output required to ski at a steeper slope was partially supplied by a greater contribution of the power generated through the pole that arises not only by an increase of the force exerted but also by an increase of its effectiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app