Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCalpha/ERK/NF-kappaB-dependent MMP-9 expression.

An increase in MMP-9 gene expression and enzyme activity with stimulating the migration of GBM8401 glioma cells via wound healing assay by 12-O-tetradecanoylphorbol-13-acetate (TPA) was detected in glioblastoma cells GBM8401. TPA-induced translocation of protein kinase C (PKC)alpha from the cytosol to membranes, and migration of GBM8401 elicited by TPA was suppressed by adding the PKCalpha inhibitors, GF109203X and H7. Activation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK) by TPA was identified, and TPA-induced migration and MMP-9 activity was significantly blocked by ERK inhibitor PD98059 and U0126, but not JNK inhibitor SP600125. Activation of NF-kappaB protein p65 nuclear translocation and IkappaBalpha protein phosphorylation with increased NF-kappaB-directed luciferase activity by TPA were observed, and these were blocked by the PD98059 and IkB inhibitor BAY117082 accompanied by reducing migration and MMP-9 activity induced by TPA in GBM8401 cells. Transfection of GBM8401 cells with PKCalpha siRNA specifically reduced PKCalpha protein expression with blocking TPA-induced MMP-9 activation and migration. Additionally, suppression of TPA-induced PKCalpha/ERK/NK-kappaB activation, migration, and MMP-9 activation by flavonoids including kaempferol (Kae; 3,5,7,4'-tetrahydroxyflavone), luteolin (Lut; 5,7,3'4'-tetrahydroxyflavone), and wogonin (Wog; 5,7-dihydroxy-8-methoxyflavone) was demonstrated, and structure-activity relationship (SAR) studies showed that hydroxyl (OH) groups at C4' and C8 are critical for flavonoids' action against MMP-9 enzyme activation and migration/invasion of glioblastoma cells elicited by TPA. Application of flavonoids to prevent the migration/invasion of glioblastoma cells through blocking PKCalpha/ERK/NF-kappaB activation is first demonstrated herein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app