ENGLISH ABSTRACT
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

[Effects of astragaloside and Panax notoginseng saponins combination on oxidative stress of cerebral ischemic reperfusion injury in mice].

OBJECTIVE: To investigate the influence of astragaloside (AST) and Panax notoginseng saponins (PNS) combination on oxidative stress of brain tissues in C57BL/6 mice with cerebral ischemia-reperfusion injury.

METHODS: Eighty C57BL/6 mice were randomly divided into sham-operated group, untreated group, high-dose combination group (AST at a dose of 220 mg/kg plus PNS at a dose of 230 mg/kg), medium-dose combination group (AST at a dose of 110 mg/kg plus PNS at a dose of 115 mg/kg), low-dose combination group (AST at a dose of 55 mg/kg plus PNS at a dose of 57.5 mg/kg), AST (110 mg/kg) group, PNS (115 mg/kg) group and edaravone (4 mg/kg) group. AST and PNS were administered by gavage once daily for 4 days and edaravone was administered by intraperitoneal injection twice daily for 4 days. On the fourth day, bilateral common carotid arteries were ligated for 20 minutes to induce cerebral ischemia, followed by 60 minutes of reperfusion. Ischemic brain tissue was used to prepare tissue homogenate, then contents of malonaldehyde (MDA), glutathione (GSH) and nitric oxide (NO), and activities of superoxide dismutase (SOD) and nitric oxide synthase (NOS) in the homogenate were detected. Two x two analysis of variance of factorial design was used to analyze whether there was an interaction between AST at 110 mg/kg and PNS at 115 mg/kg.

RESULTS: Compared with sham-operated group, contents of MDA and NO, and activity of NOS in the untreated group were remarkably increased (P<0.01), activity of SOD and content of GSH were decreased (P<0.01). Compared with the untreated group, content of MDA in the AST group was decreased (P<0.01) and activity of SOD was increased (P<0.01), however, contents of GSH and NO and activity of NOS had no obvious changes (P>0.05). Contents of MDA and NO in the PNS group was decreased as compared with the untreated group (P<0.01), but activities of SOD and NOS and content of GSH had no changes (P>0.05). Contents of MDA and NO and activity of NOS in brain tissues in the edaravone group were decreased (P<0.01, P<0.05), and activity of SOD was increased (P<0.05), while content of GSH had no changes (P>0.05). Contents of MDA and NO and activity of NOS in brain tissue in the AST and PNS combination groups were decreased (P<0.01, P<0.05), the activity of SOD increased (P<0.01, P<0.05), the content of GSH increased (P<0.01, P<0.05), and activity of SOD and content of GSH were increased (P<0.01, P<0.05). The results of analysis of variance of factorial design showed that there were interactions between AST (110 mg/kg) and PNS (115 mg/kg) (P<0.01).

CONCLUSION: Combination of AST (110 mg/kg) and PNS (115 mg/kg) has a restraint effect on the early oxidative stress injury in the brain after ischemia-reperfusion, and the combination has a synergistic or additive effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app