Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional impact of the hyperpolarization-activated current on the excitability of myelinated A-type vagal afferent neurons in the rat.

1. The hyperpolarization-induced, cation-selective current I(h) is widely observed in peripheral sensory neurons of the vagal and dorsal root ganglia, but the peak magnitude and voltage- and time-dependent properties of this current vary widely across afferent fibre type. 2. Using patch clamp investigations of rat isolated vagal ganglion neurons (VGN) identified as myelinated A-type afferents, we established a compendium of functional correlates between changes in membrane potential and the dynamic discharge properties of these sensory neurons as a result of the controlled recruitment of I(h) using the current clamp technique. 3. Two robust responses were observed in response to hyperpolarizing step currents: (i) upon initiation of the negative step current, there was a rapid hyperpolarization of membrane potential followed by a depolarizing voltage sag (DVS) towards a plateau in membrane potential as a result of steady state recruitment of I(h); and (ii) upon termination of the negative step current, there was a rapid return to the pretest resting membrane potential that often led to spontaneous action potential discharge. These data were strongly correlated (r(2) > 0.9) with a broad compendium of dynamic discharge characteristics in these A-type VGN. 4. In response to depolarizing step currents of increasing magnitude, the discharge frequency of the A-type VGN responded with increases in the rate of sustained repetitive discharge. Upon termination of the depolarizing step current, there was a post-excitatory membrane hyperpolarization of a magnitude that was strongly correlated with action potential discharge rate (r(2) > 0.9). 5. Application of the selective hyperpolarization-activated cyclic nucleotide gated (HCN) channel blockers ZD7288 (10 micromol/L) or CsCl (1.0 mmol/L) abolished I(h) and all of the aforementioned functional correlates. In addition to reducing the excitability of the A-type VGN to step depolarizing currents. 6. Because there is increasing evidence that the HCN channel current may represent a valid target for pharmacological intervention, the quantitative relationships described in the present study could potentially help guide the molecular and/or chemical modification of HCN channel gating properties to effect a particular outcome in VGN discharge properties, ideally well beyond merely selective blockade of a particular HCN channel subtype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app