Add like
Add dislike
Add to saved papers

Getting domestication straight: ramosa1 in maize.

Knowledge of the identities and characteristics of genes that govern the dramatic phenotypic differences between cultivated plants and their wild ancestors has greatly enhanced our understanding of the domestication process. In this issue of Molecular Ecology, Sigmon & Vollbrecht report the discovery of a new maize domestication gene, ramosa1, which encodes a putative transcription factor in the ramosa developmental pathway. Ramosa1 appears to be instrumental in determining the straightness of kernel rows on the maize cob. The key domestication alleles at ramosa1 are prevalent in landraces of maize. These results reinforce findings from previous studies of crop evolution by highlighting the importance of standing genetic variation and changes in transcriptional regulators in domestication. The evolutionary genetics of domestication also provides a framework for predicting the evolutionary response of organisms to strong human-induced selection pressures over limited time intervals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app