Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

The peak-to-peak ratio of single-fibre potentials is little influenced by changes in the electrode positions close to the muscle fibre.

In a series of previous works we studied the ratio between the amplitudes of the second and first phases (the peak-to-peak ratio) of single fibre action potential (SFAPs) using the Dimitrov-Dimitrova SFAP convolutional model as a reference. From experimental potentials extracted from both healthy and diseased muscles, we determined typical peak-to-peak ratio (PPR) values and ranges for both normal and pathological conditions. In addition, we investigated the changes observed in the PPR of consecutive potentials recorded at different fibre-to-electrode distances. However, our results were not conclusive due to insufficient data. The objective of the present work was to obtain a more concrete description of the relation between PPR and radial distance. To this end, we recorded 135 sets of consecutive SFAPs from the m. tibialis anterior of four normal subjects. The needle was intentionally moved whilst recording each SFAP set. We found that PPR was largely independent of small changes in electrode position when the electrode was close to the fibre and sufficiently far from the neuromuscular and/or fibre-tendon junctions. In the discussion, we provide evidence that this result is in agreement with the generation of extracellular potentials considering the spatial extension of the intracellular action potential (IAP) along the fibre.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app