L-type voltage-gated Ca2+ channels: a single molecular switch for long-term potentiation/long-term depression-like plasticity and activity-dependent metaplasticity in humans

Katharina Wankerl, David Weise, Reinhard Gentner, Jost-Julian Rumpf, Joseph Classen
Journal of Neuroscience 2010 May 5, 30 (18): 6197-204
The ability of synapses to undergo persistent activity-dependent potentiation or depression [long-term potentiation (LTP)/long-term depression (LTD)] may be profoundly altered by previous neuronal activity. Although natural neuronal activity can be experimentally manipulated in vivo, very little is known about the in vivo physiological mechanisms involved in regulating this metaplasticity in models of LTP/LTD. To examine whether Ca(2+) signaling may influence metaplasticity in vivo in humans, we used continuous theta burst stimulation (cTBS) (Huang et al., 2005), a noninvasive novel repetitive magnetic stimulation protocol known to induce persistent alterations of corticospinal excitability whose polarity is changed by previous voluntary motor activity. When directed to the naive motor cortex, cTBS induced long-lasting potentiation of corticospinal excitability, but depression under the influence of nimodipine (NDP), an L-type voltage-gated Ca(2+) channel (L-VGCC) antagonist. Both aftereffects were blocked by dextromethorphan, an NMDA receptor antagonist, supporting the notion that these bidirectional cTBS-induced alterations of corticospinal excitability map onto LTP and LTD as observed in animal studies. A short period of voluntary contraction and a small dose of NDP were each ineffective in blocking the cTBS-induced potentiation. However, when both interventions were combined, a depression was induced, and the magnitude of this depression increased with the dose of NDP. These findings suggest that Ca(2+) dynamics determine the polarity of LTP/LTD-like changes in vivo. L-VGCCs may act as molecular switches mediating metaplasticity induced by endogenous neuronal activation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"