JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Absence of intestinal microbiota does not protect mice from diet-induced obesity.

The gut microbiota has been implicated in host nutrient absorption and energy homeostasis. We studied the influence of different diets on body composition in germ-free (GF) and conventional (CV) mice. GF and CV male adult C3H mice were fed ad libitum a semi-synthetic low-fat diet (LFD; carbohydrate-protein-fat ratio: 41:42:17; 19.8 kJ/g), a high-fat diet (HFD; 41:16:43; 21.4 kJ/g) or a commercial Western diet (WD; 41:19:41; 21.5 kJ/g). There was no difference in body weight gain between GF and CV mice on the LFD. On the HFD, GF mice gained more body weight and body fat than CV mice, and had lower energy expenditure. GF mice on the WD gained significantly less body fat than GF mice on the HFD. GF mice on both HFD and WD showed increased intestinal mRNA expression of fasting-induced adipose factor/angiopoietin-like protein 4 (Fiaf/Angptl4), but they showed no major changes in circulating Fiaf/Angptl4 compared with CV mice. The faecal microbiota composition of the CV mice differed between diets: the proportion of Firmicutes increased on both HFD and WD at the expense of the Bacteroidetes. This increase in the Firmicutes was mainly due to the proliferation of one family within this phylum: the Erysipelotrichaceae. We conclude that the absence of gut microbiota does not provide a general protection from diet-induced obesity, that intestinal production of Fiaf/Angptl4 does not play a causal role in gut microbiota-mediated effects on fat storage and that diet composition affects gut microbial composition to larger extent than previously thought.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app