JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Salvianolic acid B prevents epithelial-to-mesenchymal transition through the TGF-beta1 signal transduction pathway in vivo and in vitro.

BMC Cell Biology 2010 May 6
BACKGROUND: Salvianolic Acid B (Sal B) is a water-soluble component from Danshen (a traditional Chinese herb widely used for chronic renal diseases) with anti-oxidative and cell protective properties. Sal B also has potential protective effects on renal diseases. Tubular epithelial cells can undergo epithelial-to-mesenchymal transition (EMT), which plays an important role in the pathogenesis of renal interstitial fibrosis (RIF) and is mainly regulated by TGF-beta1/Smads pathway. The aims of the study are to investigate the effect of Sal B on tubular EMT in vivo and in vitro, and to elucidate its underlying mechanism against EMT related to TGF-beta1/Smads pathway.

RESULTS: For in vivo experiments, RIF was induced in rats by oral administration of HgCl2 and prophylaxised with Sal B and vitamin E. The protein expression of E-cadherin was down-regulated, while the expression of alpha-SMA, TGF-beta1, TbetaR-I, p-Smad2/3 and the activity of matrix metalloproteinase-2 (MMP-2) were up-regulated in kidneys of model rats when compared with those of normal rats. In contrast, Sal B and vitamin E significantly attenuated the expression of alpha-SMA, TGF-beta1, TbetaR-I, p-Smad2/3, and MMP-2 activity, but increased E-cadherin expression. For in vitro experiments, HK-2 cells were incubated with TGF-beta1 to induce EMT, and the cells were co-cultured with 1 and 10 microM Sal B or SB-431542 (a specific inhibitor of TbetaR-I kinase). TGF-beta1 induced a typical EMT in HK-2 cells, while it was blocked by Sal B and SB-431542, as evidenced by blocking morphologic transformation, restoring E-cadherin and CK-18 expression, inhibiting alpha-SMA expression and F-actin reorganization, and down-regulating MMP-2/9 activities in TGF-beta1 mediated HK-2 cells. Furthermore, Sal B and SB-431542 profoundly down-regulated the expressions of TbetaR-I and p-Smad2/3 but prevented the decreased expression of Smad7 in TGF-beta1 stimulated HK-2 cells.

CONCLUSIONS: Sal B can prevent tubular EMT in the fibrotic kidney induced by HgCl2 as well as HK-2 cells triggered by TGF-beta1, the mechanism of Sal B is closely related to the regulation of TGF-beta1/Smads pathway, manifested as the inhibition of TGF-beta1 expression, suppression of TbetaR-I expression and function, down-regulation of Smad2/3 phosphorylation, and restoration of the down-regulation of Smad7, as well as inhibition of MMP-2 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app