OPEN IN READ APP
JOURNAL ARTICLE

AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1alpha and nuclear respiratory factor 1 expression in rat visual cortical neurons

L Yu, S J Yang
Neuroscience 2010 August 11, 169 (1): 23-38
20438809
Nuclear respiratory factor 1 (NRF-1) is one of the key transcription factors implicated in mitochondrial biogenesis by activating the transcription of mitochondrial transcription factor A (mtTFA) and subunit genes of respiratory enzymes. NRF-1 transactivation activity can be enhanced by interaction with transcription coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha). The expression of PGC-1alpha, NRF-1 and mtTFA in neurons is known to be tightly regulated by neuronal activity. However, the coupling signaling mechanism is poorly understood. Here, we use primary cultures of rat visual cortical neurons and a rat model of monocular deprivation (MD) to investigate whether AMP-activated protein kinase (AMPK) is implicated in mediating activity-dependent regulation of PGC-1alpha and NRF-1 expression in neurons. We find that KCl depolarization rapidly activates AMPK and significantly increases PGC-1alpha, NRF-1, and mtTFA levels with increased ATP production in neuron cultures. Similarly, pharmacological activation of AMPK with 5'-aminoimidazole-4-carboxamide riboside (AICAR) or resveratrol also markedly increases PGC-1alpha and NRF-1 mRNA levels in neuron cultures. All these effects can be completely blocked by an AMPK inhibitor, Compound C. Conversely, 1 week of MD significantly reduces AMPK phosphorylation and activity, dramatically down-regulates PGC-1alpha and NRF-1 expression in deprived primary visual cortex. Administration of resveratrol in vivo significantly activates AMPK activity and attenuates the effects of MD on mitochondria by significant increase in PGC-1alpha and NRF-1 levels, mitochondria amount, and coupled respiration. These results strongly indicate that AMPK is an essential upstream mediator that couples neuronal activity to mitochondrial energy metabolism by regulation of PGC-1alpha-NRF-1 pathway in neurons.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
20438809
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"