Add like
Add dislike
Add to saved papers

Connective tissue growth factor knockdown attenuated matrix protein production and vascular endothelial growth factor expression induced by transforming growth factor-beta1 in cultured human peritoneal mesothelial cells.

Connective tissue growth factor (CTGF), a downstream mediator of transforming growth factor-beta1 (TGF-beta1) inducing fibrosis, has recently been implicated in peritoneal fibrosis. Extracellular matrix (ECM) accumulation and angiogenesis are characteristic changes in peritoneal fibrosis. In this study we investigated the effect of CTGF knockdown via interference RNA (RNAi) on ECM production and vascular endothelial growth factor (VEGF) expression induced by TGF-beta1 in human peritoneal mesothelial cells (HPMCs). Four CTGF short hairpin RNA (shRNA) expression constructs were generated using the pRetroSuper vector, and infectious retroviral particles were prepared to infect HPMCs. Expression levels of CTGF, fibronectin(FN), collagen 1 (col 1), laminin, and VEGF mRNA and protein were measured by semi-quantitative reverse transcription polymerase chain reaction and western blot assay. CTGF expression was increased after stimulation with TGF-beta1, but inhibited using each of the four independent CTGF shRNA constructs (P < 0.01). Moreover, expression of ECM proteins (FN, col 1, and laminin) and VEGF were upregulated after incubation with TGF-beta1, but elevated levels of ECM and VEGF induced by TGF-beta1 were significantly inhibited by RNAi (P < 0.01), but not by the empty retroviral vector (P > 0.05). From these results, we concluded that retrovirus-mediated CTGF shRNA can effectively inhibit ECM production and VEGF expression induced by TGF-beta1 in HPMCs. This study suggests that downregulation of CTGF may represent a potential therapeutic approach for peritoneal fibrosis through decreasing ECM accumulation and angiogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app