Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Activation of protein kinase C isoforms and its impact on diabetic complications.

Circulation Research 2010 April 31
Both cardio- and microvascular complications adversely affect the life quality of patients with diabetes and have been the leading cause of mortality and morbidity in this population. Cardiovascular pathologies of diabetes have an effect on microvenules, arteries, and myocardium. It is believed that hyperglycemia is one of the most important metabolic factors in the development of both micro- and macrovascular complications in diabetic patients. Several prominent hypotheses exist to explain the adverse effect of hyperglycemia. One of them is the chronic activation by hyperglycemia of protein kinase (PK)C, a family of enzymes that are involved in controlling the function of other proteins. PKC has been associated with vascular alterations such as increases in permeability, contractility, extracellular matrix synthesis, cell growth and apoptosis, angiogenesis, leukocyte adhesion, and cytokine activation and inhibition. These perturbations in vascular cell homeostasis caused by different PKC isoforms (PKC-alpha, -beta1/2, and PKC-delta) are linked to the development of pathologies affecting large vessel (atherosclerosis, cardiomyopathy) and small vessel (retinopathy, nephropathy and neuropathy) complications. Clinical trials using a PKC-beta isoform inhibitor have been conducted, with some positive results for diabetic nonproliferative retinopathy, nephropathy, and endothelial dysfunction. This article reviews present understanding of how PKC isoforms cause vascular dysfunctions and pathologies in diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app