JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo.

OBJECTIVE: To develop an embryoid body-free directed differentiation protocol for the rapid generation of functional vascular endothelial cells derived from human embryonic stem cells (hESCs) and to assess the system for microRNA regulation and angiogenesis.

METHODS AND RESULTS: The production of defined cell lineages from hESCs is a critical requirement for evaluating their potential in regenerative medicine. We developed a feeder- and serum-free protocol. Directed endothelial differentiation of hESCs revealed rapid loss of pluripotency markers and progressive induction of mRNA and protein expression of vascular markers (including CD31 and vascular endothelial [VE]-cadherin) and angiogenic growth factors (including vascular endothelial growth factor), increased expression of angiogenesis-associated microRNAs (including miR-126 and miR-210), and induction of endothelial cell morphological features. In vitro, differentiated cells produced nitric oxide, migrated across a wound, and formed tubular structures in both the absence and the presence of 3D matrices (Matrigel). In vivo, we showed that cells that differentiated for 10 days before implantation were efficient at the induction of therapeutic neovascularization and that hESC-derived cells were incorporated into the blood-perfused vasculature of recipient mice.

CONCLUSIONS: The directed differentiation of hESCs is efficient and effective for the differentiation of functional endothelial cells from hESCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app