JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Isoflurane protects cardiomyocytes and mitochondria by immediate and cytosol-independent action at reperfusion.

BACKGROUND AND PURPOSE: The volatile anaesthetic isoflurane protects the heart from ischaemia and reperfusion (I/R) injury when applied at the onset of reperfusion [anaesthetic postconditioning (APoC)]. However, the mechanism of APoC-mediated protection is unknown. In this study, we examined the effect of APoC on mitochondrial bioenergetics, mitochondrial matrix pH (pH(m)) and cytosolic pH (pH(i)), and intracellular Ca(2+).

EXPERIMENTAL APPROACH: Cardiac mitochondria from Wistar rats were isolated after in vivo I/R with or without APoC (1.4%-vol isoflurane, 1 minimum alveolar concentration), and mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (DeltaPsi(m)), and oxygen consumption were assessed. In isolated cardiomyocytes and isolated mitochondria I/R injury was produced in vitro, with or without APoC (0.5 mM isoflurane). Intracellular Ca(2+), pH(m), pH(i) and DeltaPsi(m) were monitored with SNARF-1, TMRE and fluo-4, respectively. Myocyte survival was assessed when APoC was induced at pH 7.4 and 7.8. In isolated mitochondria oxygen consumption and ATP synthesis were measured.

KEY RESULTS: In vivo APoC protected against mPTP opening, slowed mitochondrial respiration and depolarized mitochondria. APoC decreased the number of hypercontracted cardiomyocytes at pH 7.4, but not at pH 7.8. APoC attenuated intracellular Ca(2+) accumulation, maintained lower pH(m), and preserved DeltaPsi(m) during reoxygenation. Isoflurane did not affect the regulation of cytosolic pH. In mitochondria, APoC preserved ATP production rate and respiration.

CONCLUSIONS AND IMPLICATIONS: At reperfusion, APoC inhibited mitochondrial respiration, depolarized mitochondria and acidified pH(m). These events may lead to inhibition of mPTP opening and, consequently, to preserved DeltaPsi(m) and ATP synthesis. This reduces intracellular Ca(2+) overload and cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app