MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Evaluation of soil nitrogen emissions from riparian zones coupling simple process-oriented models with remote sensing data

Xuelei Wang, C M Mannaerts, Shengtian Yang, Yunfei Gao, Donghai Zheng
Science of the Total Environment 2010 July 15, 408 (16): 3310-8
20417548
Riparian ecosystems have critical impacts on controlling the non-point source pollution and maintaining the health of aquatic ecosystems. In this study, a process oriented soil denitrification model was extended with algorithms from a simple nitrogen (N) cycle model and coupled to land surface remote sensing data to enhance its performance in spatial and temporal prediction of gaseous N emissions from soils in the riparian buffer zone surrounding the Guanting reservoir (China). The N emission model is based on chemical and physical relationships that govern the heat budget, soil moisture variations and nitrogen movement in soils. Besides soil water and heat processes, it includes nitrification, denitrification and ammonia (NH(3)) volatilization. SPOT-5 and Landsat-5 TM satellite data were used to derive spatial land surface information and the temporal variation in land cover parameters was also used to drive the model. A laboratory-scale anaerobic incubation experiment was used to estimate the soil denitrification model parameters for the different soil types. An in situ field-scale experiment was conducted to calibrate and validate the soil temperature, moisture and nitrogen sub-models. An indirect method was used to verify simulated N emissions, resulting in a coefficient of determination of R(2)=0.83 between simulated and observed values. Then the model was applied to the whole riparian buffer zone catchment, using the spatial resolution (10m) of the SPOT-5 image. Model sensitivity analysis showed that soil moisture was the most sensitive parameter for gaseous N emissions and soil denitrification was the main process affecting N losses to the atmosphere in the riparian area. From the aspect of land use management around the Guanting reservoir, the spatial structure and distribution of land cover and land use types in the riparian area should be adapted, to enhance faster ecological restoration of the wetland ecological system surrounding this strategically important water resource.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
20417548
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"