JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Capillary electrophoresis/mass spectrometry for the separation and characterization of bovine Cu,Zn-superoxide dismutase.

The native form of Cu,Zn-superoxide dismutase (SOD-1) is a homodimer that coordinates one Cu(2+) and one Zn(2+) per monomer. Cu(2+) and Zn(2+) ions play crucial roles in enzyme activity and structural stability, respectively. In addition, dimer formation is essential for SOD-1 functionality, and in humans several SOD-1 mutant isoforms have been associated with certain types of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disorder. In this paper we used capillary electrophoresis and mass spectrometry to study the different structures of bovine SOD-1. The metal ions of the native enzyme (Cu(2),Zn(2)-dimer SOD-1) were released in acidic medium in order to obtain apo-SOD-1, which is a monomer. Both substances were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis with ultraviolet and electrospray ionization mass spectrometry detection (CE/UV and CE/ESI-MS, respectively). With MALDI-TOF-MS, using matrices of sinapinic acid (SA) or 2,5-dihydroxybenzoic acid (DHB) with or without trifluoroacetic acid (TFA), similar mass spectra were obtained for the metalated and non-metalated samples. In both cases, an average molecular mass corresponding to the apo-monomer SOD-1 was calculated. This finding indicated that the metals were released from the Cu(2),Zn(2)-dimer SOD-1 during sample preparation or ionization. For CE/UV and CE/ESI-MS, two background electrolytes (BGEs) potentially compatible with ESI-MS detection were used, namely 1 M of acetic acid (pH 2.3) and 10 mM of ammonium acetate (pH 7.3). Using a sheath liquid of 2-propanol/water (60:40 v/v), with or without 0.1% v/v of formic acid, CE/ESI-MS sensitivity was enhanced when the acidic BGE and the acidic sheath liquid were used. However, the electrophoretic profiles and the mass spectra obtained suggested that the metals of Cu(2),Zn(2)-dimer SOD-1 were released, which generated the apo-monomer during the electrophoretic separation. The neutral BGE provided enhanced conditions for the detection of the native enzyme. The differences between the mass spectra obtained for the Cu(2),Zn(2)-dimer and the apo-monomer forms were significant and the presence of formic acid in the sheath liquid affected only sensitivity. Our results highlight the importance of selecting appropriate non-denaturing separation and detection conditions to obtain reliable structural information about non-covalent protein complexes by CE/ESI-MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app