JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Profiling of mitochondrial transcriptome in germinating wheat embryos and seedlings subjected to cold, salinity and osmotic stresses.

Mitochondrial functions are potential targets of abiotic stresses that are major environmental factors limiting plant development and productivity. To evaluate mitochondrial responses to abiotic stresses we studied mitochondrial transcriptome profiles at the early stages of wheat development after imbibition under normal and induced stress conditions. Three stresses given were low temperature (4 degrees C), high salinity (0.2 M NaCl) and high osmotic potential (0.3 M mannitol). All these stresses greatly reduced growth but dramatically increased respiration both via the cytochrome and alternative pathways. Macroarray analysis of the mitochondrial transcriptome revealed that most of the changes in transcript levels were stress specific but groups of genes responded commonly to different stresses. Under 3-days continuous stresses, 13 genes showed low temperature specific responses with either up- or down-regulation, while 14 and 23 genes showed responses specific to high salinity and high osmotic potential, respectively. On the other hand, 13 genes showed common responses, among which cob and ccmFn increased their transcript levels while transcripts of the other genes including nad6, atp4 and atp9 decreased. The differential profiles of mitochondrial transcriptome revealed by the macroarray analysis were verified by the quantitative reverse transcriptase PCR analysis. Taken together, three among five nuclear-encoded mitochondria-targeted genes included in the array showed decreases under the stresses, while MnSOD and AOX increased their transcript amounts. Our results indicated the existence of common and different regulatory mechanisms that can sense different abiotic stresses and modulate both nuclear and mitochondrial gene expression in germinating wheat embryos and seedlings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app