JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies.

Activated (AC-PW) and non-activated (C-PW) carbonaceous materials were prepared from the Brazilian-pine fruit shell (Araucaria angustifolia) and tested as adsorbents for the removal of reactive orange 16 dye (RO-16) from aqueous effluents. The effects of shaking time, adsorbent dosage and pH on the adsorption capacity were studied. RO-16 uptake was favorable at pH values ranging from 2.0 to 3.0 and from 2.0 to 7.0 for C-PW and AC-PW, respectively. The contact time required to obtain the equilibrium using C-PW and AC-PW as adsorbents was 5 and 4h at 298 K, respectively. The fractionary-order kinetic model provided the best fit to experimental data compared with other models. Equilibrium data were better fit to the Sips isotherm model using C-PW and AC-PW as adsorbents. The enthalpy and entropy of adsorption of RO-16 were obtained from adsorption experiments ranging from 298 to 323 K.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app