JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction.

Reactions of water-stable C(60) clusters (nC(60)) in water with OH radicals (*OH) and hydrated electrons (e(aq)(-)), generated by steady-state gamma-radiation, were observed and characterized. Ordered C(60) clusters were relatively recalcitrant to highly reactive *OH and e(aq)(-) species, with only a fraction of carbons oxidized and reduced, respectively. Pulse radiolysis suggested that the reactions of nC(60) with OH* and e(aq)(-) were diffusion limited, with rate constants of (7.34 +/- 0.31) x 10(9) M(-1) s(-1) and (2.34 +/- 0.02) x 10(10) M(-1) s(-1), respectively. Quantum mechanical calculations of binding energy of the C(60)-OH adduct as a function of C(60) clustering degree indicate, despite an initial fast reaction, a slower overall conversion due to thermodynamic instability of C(60)-OH intermediates. The results imply that ordered clustering of C(60) in the aqueous phase significantly hinders C(60)'s fundamental reactivity with radical species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app