Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Blinded sample size recalculation in multicentre trials with normally distributed outcome.

The internal pilot study design enables to estimate nuisance parameters required for sample size calculation on the basis of data accumulated in an ongoing trial. By this, misspecifications made when determining the sample size in the planning phase can be corrected employing updated knowledge. According to regulatory guidelines, blindness of all personnel involved in the trial has to be preserved and the specified type I error rate has to be controlled when the internal pilot study design is applied. Especially in the late phase of drug development, most clinical studies are run in more than one centre. In these multicentre trials, one may have to deal with an unequal distribution of the patient numbers among the centres. Depending on the type of the analysis (weighted or unweighted), unequal centre sample sizes may lead to a substantial loss of power. Like the variance, the magnitude of imbalance is difficult to predict in the planning phase. We propose a blinded sample size recalculation procedure for the internal pilot study design in multicentre trials with normally distributed outcome and two balanced treatment groups that are analysed applying the weighted or the unweighted approach. The method addresses both uncertainty with respect to the variance of the endpoint and the extent of disparity of the centre sample sizes. The actual type I error rate as well as the expected power and sample size of the procedure is investigated in simulation studies. For the weighted analysis as well as for the unweighted analysis, the maximal type I error rate was not or only minimally exceeded. Furthermore, application of the proposed procedure led to an expected power that achieves the specified value in many cases and is throughout very close to it.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app