JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Inflammation and fibrosis during Chlamydia pneumoniae infection is regulated by IL-1 and the NLRP3/ASC inflammasome.

Chlamydia pneumoniae is a common respiratory pathogen associated with atypical pneumonia, and it has been suggested as a trigger or promoter of several chronic inflammatory conditions, such as asthma and atherosclerosis. The beta form of IL-1 (IL-1beta) is a proinflammatory cytokine released by many cell types and is an important mediator of inflammation during infection. IL-1beta production is a tightly controlled process that includes regulation at multiple levels and typically requires two distinct signals for activation and release. In this study, we investigated the ability of C. pneumoniae to induce IL-1beta secretion. We found that C. pneumoniae was unique among the other Chlamydia species tested in its ability to potently induce secretion of mature IL-1beta from unprimed bone marrow-derived macrophages during a productive infection. TLR2 was required for induction of pro-IL-1beta, whereas the NLRP3/ASC was required for caspase-1 activation and pro-IL-1beta cleavage to produce mature IL-1beta. Caspase-1 cleavage was independent of endogenous ATP release, but required potassium flux, lysosomal acidification, and cathepsin B release. We further investigated the role of IL-1 in host defense against C. pneumoniae-induced pneumonia using mice deficient in the type I IL-1R. Although the IL-1R(-/-) mice developed an inflammatory infiltrate, the number of infiltrating neutrophils was lower, whereas there was evidence of increased infiltrating fibroblasts and mesenchymal cells and more lung fibrosis. We conclude that C. pneumoniae directly activates the NLRP3/ASC inflammasome, leading to the release of biologically active IL-1beta, and that concurrent IL-1 signaling is required for optimal host defense against acute bacterial pneumonia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app