JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Impact of assembly state on the defect tolerance of TMV-based light harvesting arrays.

Self-assembling, light harvesting arrays of organic chromophores can be templated using the tobacco mosaic virus coat protein (TMVP). The efficiency of energy transfer within systems containing a high ratio of donors to acceptors shows a strong dependence on the TMVP assembly state. Rod and disk assemblies derived from a single stock of chromophore-labeled protein exhibit drastically different levels of energy transfer, with rods significantly outperforming disks. The origin of the superior transfer efficiency was probed through the controlled introduction of photoinactive conjugates into the assemblies. The efficiency of the rods showed a linear dependence on the proportion of deactivated chromophores, suggesting the availability of redundant energy transfer pathways that can circumvent defect sites. Similar disk-based systems were markedly less efficient at all defect levels. To examine these differences further, the brightness of donor-only systems was measured as a function of defect incorporation. In rod assemblies, the photophysical properties of the donor chromophores showed a significant dependence on the number of defects. These differences can be partly attributed to vertical energy transfer events in rods that occur more rapidly than the horizontal transfers in disks. Using these geometries and the previously measured energy transfer rates, computational models were developed to understand this behavior in more detail and to guide the optimization of future systems. These simulations have revealed that significant differences in excited state dissipation rates likely also contribute to the greater efficiency of the rods and that statistical variations in the assembly process play a more minor role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app