Add like
Add dislike
Add to saved papers

Magneto-optical investigations on the formation and dissociation of intermolecular charge-transfer complexes at donor-acceptor interfaces in bulk-heterojunction organic solar cells.

The electron-hole pairs can be formed in intermolecular charge-transfer (CT) states between two adjacent molecules due to Coulomb interaction in organic semiconducting materials. In general, the exciton dissociation can experience the intermediate states: intermolecular CT states at the donor-acceptor interfaces to generate a photocurrent in organic solar cells. This article reports the magneto-optical studies on intermolecular CT states in the generation of photocurrent by using magnetic field effects of photocurrent (MFE(PC)) and light-assisted dielectric response (LADR). The MFE(PC) and LADR studies reveal that internal electrical drifting and local Coulomb interaction can largely change the formation and dissociation of CT states by changing internal charge-transport channels and local Coulomb interaction through morphological development upon thermal annealing. Therefore, the MFE(PC) and LADR can be used as effective magneto-optical tools to investigate charge recombination, separation, and transport in organic solar cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app