JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intracellular bioconjugation of targeted proteins with semiconductor quantum dots.

We demonstrate controlled in vivo bioconjugation of a targeted intracellular protein to semiconductor quantum dots (QDs). Metal-affinity driven coordination of oligohistidine-appended proteins for chelated divalent cations was exploited to facilitate this interaction. Monomeric mCherry red fluorescent protein recombinantly engineered to express an N-terminal hexahistidine sequence was expressed from a eukaryotic plasmid vector following transfection into COS-1 cells. QDs solubilized with a carboxylated polymeric ligand and pretreated with Ni(2+) were then microinjected into the mCherry-expressing COS-1 cells. Förster resonance energy transfer (FRET) between the central QD donors and mCherry acceptors specifically coordinated to their surface was utilized to probe and confirm intracellular conjugate formation. We unexpectedly found that mCherry attachment to the QDs also substantially improves its resistance to photobleaching. This proof-of-concept, highlighting targeted intracellular bioconjugation to QDs, suggests that many cytoplasmic proteins expressing the ubiquitous hexahistidine affinity handle can be specifically attached to QDs in vivo. This approach can facilitate long-term monitoring of their spatio-temporal activity or, alternatively, allow engineering and in situ assembly of designer chimeric QD-fluorescent protein sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app