JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Changes in the relative contribution of each leg to the control of quiet two-legged stance following unilateral plantar-flexor muscles fatigue.

We used unilateral plantar-flexor muscles fatigue to assess the capacity of the central nervous system to adapt quiet two-legged stance control to a unilateral ankle neuromuscular perturbation. Eighteen young healthy adults stood barefoot with their eyes closed and were asked to sway as little as possible. The Experimental group (n = 9) executed this postural task in two conditions, before (pre-test) and following the completion of a fatiguing exercise designed to induce a muscular fatigue in the plantar-flexor muscles of their dominant leg (post-test). For the Control group (n = 9), this fatiguing exercise was replaced with a standing rest period corresponding to the fatiguing exercise. Results of the Experimental group showed no significant difference between the weightbearing index measured in the pre-test condition and that observed in the post-test condition. Results further revealed that unilateral plantar-flexor muscles fatigue yielded different effects on the centre of foot pressure (CoP) displacements under the non-fatigued leg and under the fatigued leg: a wider surface area of the CoP displacements was observed under the non-fatigued than under the fatigued leg, and a higher mean speed of the CoP displacements was observed under the non-fatigued leg only in the post-test relative to the pre-test condition. These findings evidenced that the contribution of each leg to the control of quiet two-legged stance is modified as a result of muscle fatigue of unilateral plantar-flexor muscles. The greater contribution of the non-fatigued leg could be viewed as a fatigue-induced adaptive change in the control of quiet two-legged stance in response to an alteration of the unilateral ankle neuromuscular function induced by unilateral plantar-flexor muscles fatigue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app