JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL

Changes in the relative contribution of each leg to the control of quiet two-legged stance following unilateral plantar-flexor muscles fatigue

Nicolas Vuillerme, Matthieu Boisgontier
European Journal of Applied Physiology 2010, 110 (1): 207-13
20390292
We used unilateral plantar-flexor muscles fatigue to assess the capacity of the central nervous system to adapt quiet two-legged stance control to a unilateral ankle neuromuscular perturbation. Eighteen young healthy adults stood barefoot with their eyes closed and were asked to sway as little as possible. The Experimental group (n = 9) executed this postural task in two conditions, before (pre-test) and following the completion of a fatiguing exercise designed to induce a muscular fatigue in the plantar-flexor muscles of their dominant leg (post-test). For the Control group (n = 9), this fatiguing exercise was replaced with a standing rest period corresponding to the fatiguing exercise. Results of the Experimental group showed no significant difference between the weightbearing index measured in the pre-test condition and that observed in the post-test condition. Results further revealed that unilateral plantar-flexor muscles fatigue yielded different effects on the centre of foot pressure (CoP) displacements under the non-fatigued leg and under the fatigued leg: a wider surface area of the CoP displacements was observed under the non-fatigued than under the fatigued leg, and a higher mean speed of the CoP displacements was observed under the non-fatigued leg only in the post-test relative to the pre-test condition. These findings evidenced that the contribution of each leg to the control of quiet two-legged stance is modified as a result of muscle fatigue of unilateral plantar-flexor muscles. The greater contribution of the non-fatigued leg could be viewed as a fatigue-induced adaptive change in the control of quiet two-legged stance in response to an alteration of the unilateral ankle neuromuscular function induced by unilateral plantar-flexor muscles fatigue.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
20390292
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"