JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling.

Brassinosteroids BRs)play important roles in plant growth and development.BRs modulate the phosphorylation status of two crucial transcription factors, BRI1 EMS SUPPRESSOR1 BES1)and BRASSINAZOLE RESISTANT1 (BZR1).Here we show that BES1 functions as a nucleocytoplasmic signal transmitter, and that its subcellular localization modulates the output intensity of the BR signal.BRASSINOSTEROID INSENSITIVE2 (BIN2)and other group II GLYCOGEN SYNTHASE KINASE 3 GSK3)-like kinases phosphorylate BES1 and induce its nuclear export by regulating its binding affinity with 14-3-3 proteins.We identified twelve putative phosphorylation residues in BES1.Two of these residues, Ser 171 and Thr 175, are critical for interaction with 14-3-3 proteins.The other putative phosphorylation sites in the N-terminal region are required for the BIN2-mediated nuclear export of BES1.Mutations of these motifs result in increased nuclear accumulation of BES1 and enhanced BR responses in transgenic plants.Taken together, our results indicate that the spatial redistribution of BES1 is important for regulation of the BR signaling output.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app