Suppression of TLR2-induced IL-12, reactive oxygen species, and inducible nitric oxide synthase expression by Mycobacterium tuberculosis antigens expressed inside macrophages during the course of infection

Deepti Gupta, Sachin Sharma, Jhalak Singhal, Akash T Satsangi, Cecil Antony, Krishnamurthy Natarajan
Journal of Immunology 2010 May 15, 184 (10): 5444-55
We report the enrichment of and immune responses mediated by genes expressed by Mycobacterium tuberculosis inside macrophages as a function of time. Results indicate that M. tuberculosis expresses different genes at different times postinfection. Genes expressed early (day 1) following infection enhance M. tuberculosis-mediated activation of dendritic cells (DCs), whereas genes expressed later (day 5) in the infection prevent DC activation. However, all genes downmodulated MHC class I and II expression on infected macrophages, thus compromising their ability to interact with Ag-specific T cells. Day-1 and -5 genes downmodulated proinflammatory cytokine production from DCs, thus impairing signal 3 during DC-T cell cognate interactions. Consequently, T cells activated by Ag-experienced DCs secreted low levels of IFN-gamma and IL-17 but maintained high IL-10 secretion, thus inducing suppressor responses. Further characterization revealed that day-1 and -5 genes increased TLR2-induced expression of suppressors of cytokine signaling 1 from DCs and downmodulated IL-12 expression. In addition, day-1 and -5 genes prevented the generation of reactive oxygen species in DCs. In contrast, although day-5 genes increased TLR2-mediated suppressors of cytokine signaling 1 expression in macrophages, day-1 genes downmodulated the expression of inducible NO synthase 2. Similar downregulation of immune responses was observed upon exogenous stimulation with day-1 or -5 Ags. Finally, day-1 and -5 genes promoted enhanced survival of M. tuberculosis inside DCs and macrophages. These results indicate that M. tuberculosis genes, expressed inside infected macrophages as a function of time, collectively suppress protective immune responses by using multiple and complementary mechanisms.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"