Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anti-adipogenic effect of dioxinodehydroeckol via AMPK activation in 3T3-L1 adipocytes.

Dioxinodehydroeckol (DHE) isolated from Ecklonia cava, has previously been investigated for its inhibition of the differentiation of 3T3-L1 preadipocytes into adipocytes. Levels of lipid accumulation were measured, along with changes in the expression of genes and proteins associated with adipogenesis and lipolysis. Confluent 3T3-L1 preadipocytes in medium with or without different concentrations of DHE for 7 days were differentiated into adipocytes. Lipid accumulation was quantified by measuring direct triglyceride contents and Oil-Red O staining. The expression of genes and proteins associated with adipogenesis and lipolysis was measured using RT-PCR, quantitative real-time RT-PCR and Western blotting analysis. It was found that the presence of DHE significantly reduced lipid accumulation and down-regulated the expression of peroxisome proliferator-activated receptor-gamma (PPARgamma), sterol regulatory element-binding protein 1 (SREBP1) and CCAAT/enhancer-binding proteins (C/EBPalpha) in a dose-dependent manner. Moreover, DHE suppressed regulation of the adipocyte-specific gene promoters such as fatty acid binding protein (FABP4), fatty acid transport protein (FATP1), fatty acid synthase (FAS), lipoprotein lipase (LPL), acyl-CoA synthetase 1 (ACS1), leptin, perilipin and HSL compared to control adipocytes. The specific mechanism mediating the effects of DHE was confirmed by activation of phosphorylated AMP-activated protein kinase (pAMPK). Therefore, these results suggest that DHE exerts anti-adipogenic effect on adipocyte differentiation through the activation and modulation of the AMPK signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app