Add like
Add dislike
Add to saved papers

Murine metabolism and absorption of lancemaside A, an active compound in the roots of Codonopsis lanceolata.

Lancemaside A, a triterpenoid saponin isolated from the roots of Codonopsis lanceolata, has been reported to ameliorate the reduction of blood testosterone levels induced by immobilization stress in mice. In the present study, we investigated the metabolism and absorption of lancemaside A in mice. After oral administration of lancemaside A at 100 mg/kg body weight, the unmetabolized compound appeared rapidly in plasma (t (max) = 0.5 h). Lancemaside A has a low bioavailability (1.1%) because of its metabolism by intestinal bacteria and its poor absorption in the gastrointestinal tract. Furthermore, we identified four metabolites from the cecum of mice after oral administration of lancemaside A: codonolaside II, echinocystic acid, echinocystic acid 28-O-beta-D: -xylopyranosyl-(1 --> 4)-alpha-L: -rhamnopyranosyl-(1 --> 2)-alpha-L: -arabinopyranosyl ester, and echinocystic acid 28-O-alpha-L: -rhamnopyranosyl-(1 --> 2)-alpha-L: -arabinopyranosyl ester. Among these metabolites, codonolaside II and echinocystic acid were detected in plasma, and their t (max) values were 4 and 8 h, respectively. These findings should be helpful for understanding the mechanism of the biological effect of lancemaside A.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app