Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Grape powder extract attenuates tumor necrosis factor α-mediated inflammation and insulin resistance in primary cultures of human adipocytes.

Grapes are rich in phenolic phytochemicals that possess anti-oxidant and anti-inflammatory properties. However, the ability of grape powder extract (GPE) to prevent inflammation and insulin resistance in human adipocytes caused by tumor necrosis factor α (TNFα), a cytokine elevated in plasma and white adipose tissue (WAT) of obese, diabetic individuals, is unknown. Therefore, we examined the effects of GPE on markers of inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes treated with TNFα. We found that GPE attenuated TNFα-induced expression of inflammatory genes including interleukin (IL)-6, IL-1β, IL-8, monocyte chemoattractant protein (MCP)-1, cyclooxygenase (COX)-2 and Toll-like receptor (TLR)-2. GPE attenuated TNFα-mediated activation of extracellular signal-related kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) and activator protein-1 (AP-1, i.e., c-Jun). GPE also attenuated TNFα-mediated IκBα degradation and nuclear factor-kappa B (NF-κB) activity. Finally, GPE prevented TNFα-induced expression of protein tyrosine phosphatase (PTP)-1B and phosphorylation of serine residue 307 of insulin receptor substrate-1 (IRS-1), which are negative regulators of insulin sensitivity, and suppression of insulin-stimulated glucose uptake. Taken together, these data demonstrate that GPE attenuates TNFα-mediated inflammation and insulin resistance in human adipocytes, possibly by suppressing the activation of ERK, JNK, c-Jun and NF-κB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app