JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Inhibition of proteasomal degradation of rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks.

BACKGROUND: The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. The integrity of the Rpn4-proteasome feedback loop is critical for cell viability under stressed conditions. We have demonstrated that inhibition of Rpn4 degradation sensitizes cells to DNA damage, particularly in response to high doses of DNA damaging agents. The underlying mechanism, however, remains unclear.

METHODOLOGY/PRINCIPAL FINDINGS: Using yeast genetics and biochemical approach we show that inhibition of Rpn4 degradation displays a synthetic growth defect with deletion of the MEC1 checkpoint gene and sensitizes several checkpoint mutants to DNA damage. In addition, inhibition of Rpn4 degradation leads to a defect in repair of double-strand breaks (DSBs) by nonhomologous end-joining (NHEJ). The expression levels of several key NHEJ genes are downregulated and the recruitment of Yku70 to a DSB is reduced by inhibition of Rpn4 degradation. We find that Rpn4 and the proteasome are recruited to a DSB, suggesting their direct participation in NHEJ. Inhibition of Rpn4 degradation may result in a concomitant delay of release of Rpn4 and the proteasome from a DSB.

CONCLUSION/SIGNIFICANCE: This study provides the first evidence for the role of proteasomal degradation of Rpn4 in NHEJ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app