Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Curcumin induces mitochondria pathway mediated cell apoptosis in A549 lung adenocarcinoma cells.

Several studies have shown that curcumin can induce apoptosis and inhibit growth in human tumor cell lines. However, the mechanism is not completely understood yet. The present studies were designed to investigate the effects of curcumin on human A549 lung adenocarcinoma cells lines to better understand its effect on apoptosis and apoptosis-related genes in vitro. Apoptosis induction, mitochondria membrane potential, mitochondria structure, and apoptotic associated gene expression were examined by flow cytometric assay, confocal microscopy, Western blotting and electron microscopy. After treatment with curcumin, percentage of apoptotic cells increased dose- and time-dependently, and morphology observation revealed typical apoptotic features. Our data further indicated that the expression of Bax proteins in A549 cells was increased in a dose-dependent manner, whereas the expression of Bcl-2 was significantly decreased, thus the ratio of Bax/Bcl-2 was increased. The apoptotic process was accompanied by the change of mitochondrial function and structure which led to release of the cytochrome c, and activation of caspase-9 and caspase-3. Furthermore, curcumin also induced a dose-dependent cleavage of PARP. Caspases activation during the course of curcumin-induced apoptosis was additionally confirmed by using a broad-spectrum caspases inhibitor, Z-VAD-fmk. As expected, the inhibitor was able to decrease curcumin-induced apoptosis on A549 cells. These results suggested that mitochondria played an important role in the curcumin-induced apoptosis, and mitochondria membrane potential loss initiated apoptosis via the activation of caspases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app