Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis.

In our previous study, we showed that capsaicin induces autophagy in several cell lines. Here, we investigated the molecular mechanisms of capsaicin-induced autophagy in malignant (MCF-7 and MDA-MB-231) and normal (MCF10A) human breast cells. Capsaicin caused nonapoptotic cell cycle arrest of MCF-7 and MDA-MB-231 cells but induced apoptosis in MCF10A cells. In MCF-7 and MDA-MB-231 cells, capsaicin induced endoplasmic reticulum (ER) stress via inositol-requiring 1 and Chop and induced autophagy, as demonstrated by microtubule-associated protein 1 light chain-3 (LC3) conversion. Autophagy blocking by 3-methyladenine (3MA) or bafilomycin A1 (BaF1) activated caspase-4 and -7 and enhanced cell death. In MCF-7 and MDA-MB-231 cells, p38 was activated for more than 48 h by capsaicin treatment, but extracellular signal-regulated kinase (ERK) activation decreased after 12 h, and LC3II levels continuously increased. Furthermore, treatment with 3MA markedly down-regulated capsaicin-induced p38 activation and LC3 conversion, and BaF1 completely down-regulated ERK activation and led to LC3II accumulation. In addition, pharmacological blockade or knockdown of the p38 gene down-regulated Akt activation and LC3II levels but did not affect ERK, and pharmacological blockade or knockdown of the ERK gene up-regulated LC3II induction by capsaicin. Knockdown of inositol-requiring 1 down-regulated p38-Akt signaling. In MCF10A cells, capsaicin did not elicit p38 activation and LC3 conversion and caused the sustained activation of caspase-4. Collectively, capsaicin-induced autophagy is regulated by p38 and ERK; p38 controls autophagy at the sequestration step, whereas ERK controls autophagy at the maturation step, and that autophagy is involved in the retardation of cell death by blocking capsaicin-induced ER stress-mediated apoptosis in MCF-7 and MDA-MB-321 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app