Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aquaporin 5 expression inhibited by LPS via p38/JNK signaling pathways in SPC-A1 cells.

Proper H(2)O to mucin ratio of airway mucus is important for mucociliary clearance. Recent studies suggest that decreased aquaporin 5 (AQP5) is correlated with increased staining of MUC5AC in submucosal glands of COPD patients. Lipopolysaccharide (LPS) is one of the major insults in airway mucin secretion in COPD. In this study, changes in both AQP5 and MUC5AC expression levels in SPC-A1, a human airway submucosal gland cell line, were quantified after exposure of the cells to LPS. AQP5 transcription and protein expression were decreased while MUC5AC expression was increased by LPS exposure in SPC-A1 cells. Further studies revealed that AQP5 expression was down-regulated via the p38/JNK signaling pathway, while MUC5AC was up-regulated through the EGFR-p38/JNK pathway. Therefore, p38 and JNK may become promising targets to preserve AQP5 expression and prevent MUC5AC over-expression to restore proper H(2)O to mucin ratio of the airway mucus, which may be beneficial to the clinical management of COPD patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app