Add like
Add dislike
Add to saved papers

A heterozygous mutation of the insulin-like growth factor-I receptor causes retention of the nascent protein in the endoplasmic reticulum and results in intrauterine and postnatal growth retardation.

BACKGROUND: Mutations in the IGF-I receptor (IGF1R) gene can be responsible for intrauterine and postnatal growth disorders.

OBJECTIVE: Here we report on a novel mutation in the IGF1R gene in a female patient. The aim of our study was to analyze the functional impact of this mutation.

PATIENT: At birth, the girl's length was 47 cm [-1.82 sd score (SDS)], and her weight was 2250 g (-2.26 SDS). Clinical examination revealed microcephaly and retarded cognitive development. She showed no postnatal catch-up growth but had relatively high IGF-I levels (+1.83 to +2.17 SDS).

RESULTS: Denaturing HPLC screening and direct DNA sequencing disclosed a heterozygous missense mutation resulting in an amino acid exchange from valine to glutamic acid at position 599 (V599E-IGF1R). Using various cell systems, we found that the V599E-IGF1R mutant was not tyrosine phosphorylated and had an impaired downstream signaling in the presence of IGF-I. Flow cytometry and live cell confocal laser scanning microscopy revealed a lack of cell surface expression due to an extensive retention of V599E-IGF1R proteins within the endoplasmic reticulum.

CONCLUSION: The V599E-IGF1R mutation interferes with the receptor's trafficking path, thereby abrogating proreceptor processing and plasma membrane localization. Diminished cell surface receptor density solely expressed from the patient's wild-type allele is supposed to lead to insufficient IGF-I signaling. We hypothesize that this mechanism results in intrauterine and postnatal growth retardation of the affected patient. The reported retention of the nascent IGF1R in the endoplasmic reticulum presents a novel mechanism of IGF-I resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app