Add like
Add dislike
Add to saved papers

Energy level alignment at the anode of poly(3-hexylthiophene)/fullerene-based solar cells.

We have used ultraviolet photoelectron spectroscopy to investigate the energy-level and band alignment near the anode for poly(3-hexylthiophene)/[6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT/PCBM)-based organic solar cells. Analysis of various batches of indium-tin oxide (ITO) revealed that the photoresist residues had a strong effect, reducing the work functions of ITO (Phi(ITO)) by as much as 0.61 eV. The energy-level alignment of poly(3,4-ethylenedioxythiophene)/ITO (Phi(PEDOT/ITO)) interfaces obey the Mott-Schottky rule at values of Phi(ITO) of less than 3.92 eV. In contrast, we observed Fermi-level pinning for the blend/PEDOT interfaces at values of Phi(PEDOT/ITO) greater than 4.26 eV; this finding is consistent with a previous report that the positive polaronic energy of P3HT is equal to 4.0 eV. Consequently, we suspect that the similar efficiency levels and open-circuit voltages of devices prepared from various ITO samples were due mainly to the constant interfacial energy barrier at the blend/PEDOT interface with Fermi-level pinning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app