Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biomimetic ultrathin whitening by capillary-force-induced random clustering of hydrogel micropillar arrays.

Capillary-force-induced collapse of high-aspect-ratio microstructures has often been considered a failure mechanism in device fabrication. Here, we study capillary-force-induced clustering behavior of highly ordered hydrogel micropillar arrays from 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) and explore their utility as ultrathin whitening layers (less than 9 mum thick). When exposed to water, followed by drying in an air stream, the micropillars were softened, bent, and randomly clustered together because of competition between the capillary force and elastic restoring force of the pillars. By varying the relative composition of the water-swellable PHEMA and glassy PMMA, we modulated the elastic modulus of the pillars in the wet state spanning over 3 orders of magnitude. By minimizing the sum of the capillary meniscus interaction energy and the elastic bending energy of the pillars for a cluster, we estimated the average cluster size as a function of the elastic modulus of the pillars, which agreed well with the experimental observation. The randomly clustered micropillar arrays appeared white in color because of random light scattering from the clusters, similar to the observation in the white beetles, whose scales consist of a few micrometer-thick random networks of microfilaments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app