JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli.

Nanoscale zerovalent iron (NZVI) is used for groundwater remediation. Freshly synthesized bare, i.e. uncoated NZVI is bactericidal at low mg/L concentration, but the impact of surface modifiers and aging (partial oxidation) on its bactericidal properties have not been determined. Here we assess the effect that adsorbed synthetic polymers and natural organic matter (NOM) and aging (partial oxidation) have on the bactericidal properties of NZVI to the gram-negative bacterium, Escherichia coli. Exposure to 100 mg/L of bare NZVI with 28% Fe(0) content resulted in a 2.2-log inactivation after 10 min and a 5.2-log inactivation after 60 min. Adsorbed poly(styrene sulfonate) (PSS), poly(aspartate) (PAP), or NOM on NZVI with the same Fe(0) content significantly decreased its toxicity, causing less than 0.2-log inactivation after 60 min. TEM images and heteroaggregation studies indicate that bare NZVI adheres significantly to cells and that the adsorbed polyelectrolyte or NOM prevents adhesion, thereby decreasing NZVI toxicity. The 1.8-log inactivation observed for bare NZVI with 7% Fe(0) content was lower than the 5.2-log inactivation using NZVI with 28% Fe(0) after 1 h; however, the minimum inhibitory concentration (MIC) after 24 h was 5 mg/L regardless of Fe(0) content. The MIC of PSS, PAP, and NOM coated NZVI were much higher: 500 mg/L, 100 mg/L, and 100 mg/L, respectively. But the MIC was much lower than the typical injection concentration used in remediation (10 g/L). Complete oxidation of Fe(0) in NZVI under aerobic conditions eliminated its bactericidal effects. This study indicates that polyelectrolyte coatings and NOM will mitigate the toxicity of NZVI for exposure concentrations below 0.1 to 0.5 g/L depending on the coating and that aged NZVI without Fe(0) is relatively benign to bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app