JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells.

Carcinogenesis 2010 June
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of other genes by transcriptional inhibition or translational repression. miR-34a is a known tumor suppressor gene and inhibits abnormal cell growth. However, its role in other tumorigenic processes is not fully known. This study aimed to investigate the action of miR-34a on cell invasion. We found that miR-34a is expressed at various levels in cervical cancer (HeLa, SiHa, C4I, C33a and CaSki) and trophoblast (BeWo and JAR) cell lines. Transient forced expression of miR-34a did not affect the proliferation of these cell lines. Computational miRNA target prediction suggested that Notch1 and Jagged1 were targets of miR-34a. By using functional assays, miR-34a was demonstrated to bind to the 3' untranslated regions of Notch1 and Jagged1. Forced expression of miR-34a altered the expression of Notch1 and Jagged1 protein as well as Notch signaling as shown by the response of Hairy Enhancer of Split-1 protein to these treatments using western blot analysis. Forced expression of miR-34a suppressed the invasiveness of HeLa and JAR cells. By using gamma-secretase inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) that interfered Notch signaling and RNA interference that knockdown Notch1 expression, we confirmed that downregulation of Notch1 reduced the invasiveness of the cells. Transfection of intracellular domain of Notch nullifies the effect of miR-34a on the invasiveness of the cells. Besides, we identified that miR-34a affected cell invasion by regulating expression of urokinase plasminogen activator through Notch. Our results provide evidence that miR-34a inhibits invasiveness through regulation of the Notch pathway and its downstream matrix degrading enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app