JOURNAL ARTICLE

Translocation of protein kinase C isoforms is involved in propofol-induced endothelial nitric oxide synthase activation

L Wang, B Wu, Y Sun, T Xu, X Zhang, M Zhou, W Jiang
British Journal of Anaesthesia 2010, 104 (5): 606-12
20348139

BACKGROUND: Previous studies have indicated that protein kinase C (PKC) may enhance endothelial nitric oxide synthase (eNOS) activation, although the detailed mechanism(s) remains unclear. In this study, we investigated the roles of PKC isoforms in regulating propofol-induced eNOS activation in human umbilical vein endothelial cells (HUVECs).

METHODS: We applied western blot (WB) analysis to investigate the effects of propofol on Ser(1177) phosphorylation-dependent eNOS activation in HUVECs. Nitrite (NO(2)(-)) accumulation was measured using the Griess assay. The phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway was examined by WB assay. Propofol-induced translocation of individual PKC isoforms in subcellular fractions in HUVECs was analysed using WB assay.

RESULTS: In HUVECs, protocol treatment (1-100 microM) for 10 min induced a concentration-dependent increase in phosphorylation of eNOS at Ser(1177). The NO production was also increased accordingly. PKC inhibitors, bisindolylmaleimide I (0.1-1 microM), and staurosporine (20 and 100 nM), effectively blocked propofol-induced eNOS activation and NO production. Further analyses in fractionated endothelial lysate showed that short-term propofol treatment (50 microM) led to translocation of PKC-alpha, PKC-delta, PKC-zeta, PKC-eta, and PKC-epsilon from cytosolic to membrane fractions, which could also be inhibited by both PKC inhibitors. These data revealed that the differential redistribution of these isozymes is indispensable for propofol-induced eNOS activation. In addition, Akt was not phosphorylated in response to propofol at Ser(473) or Thr(308).

CONCLUSIONS: Propofol induces the Ser(1177) phosphorylation-dependent eNOS activation through the drug-stimulated translocation of PKC isoforms to distinct intracellular sites in HUVECs, which is independent of PI3K/Akt-independent pathway.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20348139
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"