JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Defective circulating CD4CD25+Foxp3+CD127(low) regulatory T-cells in patients with chronic heart failure.

AIMS: Increasing evidences confirm the role of immune activation in the pathogenesis of chronic heart failure (CHF). Regulatory T cells appear central to the control of immune homeostasis. We assessed the hypothesis that the circulating frequency and function of CD4+CD25+ Foxp3+CD127(low) T regulatory cells (Tregs) would be deranged in patients with CHF.

METHODS: Ninety-nine CHF patients due to non-ischemic (NIHF) or ischemic etiology (IHF) and 24 control donors were enrolled in the study. Frequency of circulating Tregs was evaluated by flow cytometry. Foxp3 in peripheral blood mononuclear cells (PBMCs) was assayed at the mRNA level by real-time PCR. Functional properties of Tregs to suppress proliferation and pro-inflammatory cytokines secretion of activated CD4+CD25(-) T cells were measured by proliferation assay and ELISA.

RESULTS: The results demonstrated that CHF patients had significantly lower frequency of circulating Tregs and reduced Foxp3 expression in PBMCs compared with control donors. Moreover, Tregs from CHF patients showed compromised function to suppress CD4+CD25(-) T cells proliferation and pro-inflammatory cytokines secretion. A similar pattern with reduced Tregs frequency and compromised function was found in both NIHF and IHF patients. Correlation analysis suggested that Tregs frequency and function positively correlated with LVEF, whereas negatively correlated with LVEDD and NT-proBNP in patients with CHF.

CONCLUSIONS: Our data are the first to demonstrate that frequencies of circulating Tregs in patients with CHF are reduced and their suppressive function compromised independently of the etiology. Defective Tregs may be an underlying mechanism of immune activation in CHF patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app