Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A bispecific enediyne-energized fusion protein containing ligand-based and antibody-based oligopeptides against epidermal growth factor receptor and human epidermal growth factor receptor 2 shows potent antitumor activity.

PURPOSE: The cooverexpression of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) observed in many human tumors and their synergistic interaction in the transformation of cells make these receptors important targets for the development of new targeted therapeutics. Targeting of EGFR and HER2 simultaneously has been pursued as a strategy with which to potentially increase efficiency and selectivity in therapy of certain cancers. This study was set to construct a bispecific energized fusion protein (Ec-LDP-Hr-AE) consisting of two oligopeptides against EGFR and HER2, and lidamycin, and investigate its antitumor efficacy.

EXPERIMENTAL DESIGN: In vitro experiments measured the binding and internalization of bispecific Ec-LDP-Hr fusion protein. The potency of energized fusion proteins was also done in which the bispecific Ec-LDP-Hr-AE was compared with lidamycin (LDM) and its monospecific counterparts, Ec-LDP-AE and LDP-Hr-AE. In vivo, Ec-LDP-Hr-AE was given i.v. to nude mice bearing human ovarian carcinoma SK-OV-3 xenografts.

RESULTS: Binding and internalization studies showed that bispecific fusion protein Ec-LDP-Hr bound to carcinoma cells specifically and then were internalized into the cytoplasm. Bispecific Ec-LDP-Hr-AE was more potent and selective in its cytotoxicity against different carcinoma cell lines than corresponding momospecific agents and LDM in vitro. In addition, Ec-LDP-Hr-AE significantly inhibited the growth of SK-OV-3 xenografts in nude mouse model. In vivo imaging study showed that FITC-labeled Ec-LDP-Hr was targeted and accumulated in the tumors.

CONCLUSION: A ligand-based and an antibody-based oligopeptide fused to the enediyne antibiotic LDM created a new bispecific fusion protein with low molecular weight and more potent in vitro and in vivo antitumor activity (than momospecific fusion proteins).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app