Auxin and strigolactones in shoot branching: intimately connected?

Petra Stirnberg, Sally Ward, Ottoline Leyser
Biochemical Society Transactions 2010, 38 (2): 717-22
Axillary meristems form in the axils of leaves. After an initial phase of meristematic activity during which a small axillary bud is produced, they often enter a state of suspended growth from which they may be released to form a shoot branch. This post-embryonic growth plasticity is typical of plants and allows them to adapt to changing environmental conditions. The shoot architecture of genotypically identical plants may display completely contrasting phenotypes when grown in distinct environmental niches, with one having only a primary inflorescence and many arrested axillary meristems and the other displaying higher orders of branches. In order to cease and resume growth as required, the plant must co-ordinate its intrinsic developmental programme with the responses to environmental cues. It is thought that information from the environment is integrated throughout the plant using plant hormones as long-distance signals. In the present review, we focus primarily on how two of these hormones, auxin and strigolactones, may be acting to regulate shoot branching.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"