Homoleptic tris(pyridyl pyrazolate) Ir(III) complexes: en route to highly efficient phosphorescent OLEDs

Kellen Chen, Cheng-Han Yang, Yun Chi, Chao-Shiuan Liu, Chih-Hao Chang, Chung-Chia Chen, Chung-Chih Wu, Min-Wen Chung, Yi-Ming Cheng, Gene-Hsiang Lee, Pi-Tai Chou
Chemistry: a European Journal 2010 April 12, 16 (14): 4315-27
Treatment of the metal reagent IrCl(3)nH(2)O with two equivalents of 2-pyridyl pyrazole (N;N)H (3-tert-butyl-5-(2-pyridyl) pyrazole, (bppz)H and 3-trifluoromethyl-5-(2-pyridyl) pyrazole, (fppz)H), afforded the isomeric Ir(III) metal complexes with a general formula cis-[Ir(bppz)(2)Cl(2)]H (2 a), trans-[Ir(bppz)(2)Cl(2)]H (3 a), cis-[Ir(fppz)(2)Cl(2)]H (2 b), and trans-[Ir(fppz)(2)Cl(2)]H (3 b). Single-crystal X-ray diffraction studies on 2 b and 3 a revealed the coexistence of two pyrazolate chelates and two terminal chloride ligands on the coordination sphere. Subsequent reactivity studies confirmed their intermediacy to the preparation of homoleptic mer-[Ir(bppz)(3)] (1 a) and mer-[Ir(fppz)(3)] (1 b) that showed dual intraligand and ligand-to-ligand charge-transfer phosphorescence at room temperature. To attain bright, room-temperature phosphorescence further, we then synthesized two isoquinolinyl pyrazolate complexes, mer-[Ir(bipz)(3)] (4 a) and mer-[Ir(fipz)(3)] (4 b) ((bipz)H=3-tert-butyl-5-(1-isoquinolyl) pyrazole and (fipz)H=3-trifluoromethyl-5-(1-isoquinolyl) pyrazole). Their orange luminescence is mainly attributed to the mixed MLCT/pipi* transition, and the quantum yields were as high as 86 (4 a) and 50 % (4 b) in degassed CH(2)Cl(2) solution at RT. The organic light-emitting diodes (OLEDs) were then fabricated by using 4 a as a dopant, giving orange luminescence with CIE(x,y)=0.55, 0.45 (CIE(x,y)=the 1931 Commission Internationale de L'Eclairage (x,y) coordinates) and peak efficiencies of 14.6 % photon/electron, 34.8 cd A(-1), 26.1 lm W(-1). The device data were then compared with the previously reported heteroleptic complex [Ir(dfpz)(2)(bipz)] (5) ((dfpz)H=1-(2,4-difluorophenyl) pyrazole), revealing the possible effect of the bipz chelate and phosphor design on the overall electrophosphorescent performance, which can be understood by the differences in the carrier-transport properties.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"