JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers.

The Western Rattlesnake (Crotalus viridis sensu lato, now including Crotalus oreganus) is broadly distributed across the western half of the United States, northwestern Mexico and southwestern Canada, and eight subspecies are currently recognized. Although some venom characteristics have been noted for most subspecies, a systematic study of venoms from all subspecies has not been reported. Venom was extracted from snakes collected from approximate geographic range centers for all subspecies and analyzed using SDS-PAGE, MALDI-TOF mass spectrometry, enzyme and toxicity assays. Electrophoretic and mass spectrometric analyses demonstrated that small myotoxins, disintegrins and PLA(2) were abundant in most venoms. PIII and PI metalloproteinases ( approximately 54 kDa and 23 kDa, respectively) were common to all venoms except C. o. concolor, C. o. caliginis and C.o. helleri. Metalloproteinase activity was highest in C. o. cerberus and lowest in C. o. concolor venoms ( approximately 100-fold difference). Conversely, C. o. concolor venom was the most toxic and C. o. cerberus venom was least toxic (15-fold difference). In general, venoms with high metalloproteinase activity were less toxic (type I venoms), while venoms which were highly toxic showed low protease activity (type II venoms). Within the C. viridis/oreganus complex, these two extremes of venom compositional phenotypes are observed, and it appears that high metalloproteinase activity and high toxicity are incompatible qualities of these venoms. The functional significance of these biochemical characteristics likely relates to characteristics of prey consumed, and venoms with low metalloproteinase activity may constrain snake prey selection or foraging activity patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app