JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children.

Arsenic (As) exposure has been associated with alterations in the immune system, studies in experimental models and adults have shown that these effects involve macrophage function; however, limited information is available on what type of effects could be induced in children. The aim of this study was to evaluate effects of As exposure, through the association of inorganic As (iAs) and its metabolites [monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] with basal levels of nitric oxide (NO(-)) and superoxide anion (O(2)(-)), in peripheral blood mononuclear cells (PBMC) and monocytes, and NO(-) and O(2)(-) produced by activated monocytes. Hence, a cross-sectional study was conducted in 87 children (6-10 years old) who had been environmentally exposed to As through drinking water. Levels of urinary As species (iAs, MMA and DMA) were determined by hydride generation atomic absorption spectrometry, total As (tAs) represents the sum of iAs and its species; tAs urine levels ranged from 12.3 to 1411 microg/g creatinine. Using multiple linear regression models, iAs presented a positive and statistical association with basal NO(-) in PBMC (beta=0.0048, p=0.049) and monocytes (beta=0.0044, p=0.044), while basal O(2)(-) had a significant positive association with DMA (beta=0.0025, p=0.046). In activated monocytes, O(2)(-) showed a statistical and positive association with iAs (beta=0.0108, p=0.023), MMA (beta=0.0066, p=0.022), DMA (beta=0.0018, p=0.015), and tAs (beta=0.0013, p=0.015). We conclude that As exposure in the studied children was positively associated with basal levels of NO(-) and O(2)(-) in PBMC and monocytes, suggesting that As induces oxidative stress in circulating blood cells. Additionally, this study showed a positive association of O(2)(-) production with iAs and its metabolites in stimulated monocytes, supporting previous data that suggests that these cells, and particularly the O(2)(-) activation pathway, are relevant targets for As toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app